Abstract
Layered double hydroxide nanoparticles (LDHNPs) with exceptionally small particle sizes are synthesized using a tripodal ligand of tris(hydroxymethyl)aminomethane (THAM). For example, a LDHNP with the average size of 9.7 nm (denoted as LDH(10 nm), containing CO32– in the interlayer), can be synthesized using a 2.0 M THAM solution. The 13C CP/MAS NMR and FTIR analyses show that THAM is ligated to the layer as an alkoxide species. The average particle size of LDH synthesized using l-lysine (buffering base) instead of THAM is larger (47.9 nm) than that of LDH(10 nm). Therefore, the size reduction is possibly explained by the specific interaction of THAM with the layer via its multiple coordination. In addition, it is confirmed by the 13C CP/MAS NMR analysis that LDH(10 nm) possesses CO32– species weakly interacting with the layers. LDHNPs, in particular, as-synthesized LDH(10 nm) (denoted as LDH(10 nm)-as, containing CO32– and Cl– in the interlayer), possesses the extremely high anion exchange abilities, and...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.