Abstract

We consider a class of bimodules over polynomial algebras which were originally introduced by Soergel in relation to the Kazhdan–Lusztig theory, and which describe a direct summand of the category of Harish–Chandra modules for sl(n). Rouquier used Soergel bimodules to construct a braid group action on the homotopy category of complexes of modules over a polynomial algebra. We apply Hochschild homology to Rouquier's complexes and produce triply-graded homology groups associated to a braid. These groups turn out to be isomorphic to the groups previously defined by Lev Rozansky and the author, which depend, up to isomorphism and overall shift, only on the closure of the braid. Consequently, our construction produces a homology theory for links.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.