Abstract
Melia azedazach, a plant for forestation, is popular in many countries. Development of triploid M. azedazach varieties will provide additional advantages, such as faster growth, higher biomass, and; therefore, increased productivity. In this study, we aimed to develop triploid M. azedarach L. by immature endosperm tissue culture. After 22 days of initiation of cultures, calli of the endosperm were visible. After 50 days cultured on Murashige and Skoog (MS) medium supplemented with 2.0 mg/l NAA and 1.0 mg/l BAP, maximum of callus induction rate from the immature endosperm with seed coat was obtained at 55.9%. The highest frequency of shoot induction from endosperm-derived callus was 98% and average of 16.7 shoots per explant on the medium supplemented with 1.5 mg/l BAP and 0.5 mg/l NAA after 42 days. A single shoot was detached from the multi-shoots and transferred to the rooting medium supplemented with 0.5 mg IBA, inducing root formation with 96.6% and with average of 5.8 roots per plantlet after 28 days. The plantlets transferred to polythene hycotrays containing soil and sand (mixture 1:1) in greenhouse showed 100% survival after transplantation. The endosperm-derived plantlets were 100% triploids as evidenced by flow cytometry analysis. Creating triploid M. azedazach plants by regenerating directly from endosperm (3n) described in this work required only 5 months whereas the traditional method of generating triploids through crossing between tetraploid (4n) and diploid (2n) plants could take up to 12 years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.