Abstract

The majority of studies on DNA triple helices have been focused on pH-sensitive parallel triplexes with Hoogsteen CT-containing third strands that require protonation of cytosines. Reverse Hoogsteen GT/GA-containing antiparallel triplex-forming oligonucleotides (TFOs) do not require an acidic pH but their applicability in triplex technology is limited because of their tendency to form undesired highly stable aggregates such as G-quadruplexes. In this study, G-rich oligonucleotides containing 2-4 insertions of twisted intercalating nucleic acid(TINA) monomers are demonstrated to disrupt the formation of G-quadruplexes and form stable antiparallel triplexes with target DNA duplexes. The structure of TINA-incorporated oligonucleotides was optimized, the rules of their design were established and the optimal triplex-forming oligonucleotides were selected. These oligonucleotides show high affinity towards a 16 bp homopurine model sequence from the HIV-1 genome; dissociation constants as low as 160 nM are observed whereas the unmodified TFO does not show any triplex formation and instead forms an intermolecular G-quadruplex with T(m) exceeding 90°C in the presence of 50 mM NaCl. Here we present a set of rules that help to reach the full potential of TINATFOs and demonstrate the effect of TINA on the formation and stability of triple helical DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.