Abstract

Current bilayer organic photovoltaics cannot be made thick enough to absorb all incident solar radiation because of the short diffusion lengths (≈10 nm) of singlet excitons. Thus, the diffusion length sets an upper bound on the efficiency of these devices. By contrast, triplet excitons can have very long diffusion lengths (as large as 10 μm) in organic solids, leading some to speculate that triplet excitonic solar cells could be more efficient than their singlet counterparts. In this paper, we examine the nature of singlet and triplet exciton diffusion. We demonstrate that although there are fundamental physical upper bounds on the distance singlet excitons can travel by hopping, there are no corresponding limits on triplet diffusion lengths. This conclusion strongly supports the idea that triplet diffusion should be more controllable than singlet diffusion in organic photovoltaics. To validate our predictions, we model triplet diffusion by purely ab inito means in various crystals, achieving good agreeme...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call