Abstract

The specific features of the triplet-triplet (T-T) transfer of electronic excitation energy in a gas phase upon nonequilibrium vibrational excitation of the triplet molecules of a donor were studied for an anthraquinone-diacetyl donor-acceptor pair using the time-resolved slow fluoresence of anthraquinone and sensitized phosphorescence of diacetyl. It is shown that in the gas phase, which allows regular control of the number of collisions, competition between the processes of T-T transfer and intermolecular vibrational relaxation is observed for nanosecond time resolution. The T-T transfer rate for the molecular system investigated exceeded the rate of intermolecular vibrational relaxation kV in the triplet state T1 of the donor. The effectiveness of the T-T transfer of energy by vibrationally excited molecules turned out to be higher than the effectiveness of transfer by thermalized ones, but even the highest of them was much less than unity. An increase in the equilibrium temperature of vapors led to a decrease in the effectiveness of transfer for both vibrationally excited and thermalized triplet molecules, thus indicating the importance of the collisional complex in the intermolecular process studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call