Abstract
Semiconducting single-walled carbon nanotubes (SWNTs) are considered as building blocks for novel optoelectronic and photonic devices. Energy transport, dissipation and nonlinear optical properties of such devices depend critically on the dynamics of singlet and triplet excitons. However, little is known about triplet excitons in SWNTs despite their important role in photovoltaic, photoelectric and other applications. We present pump–probe and spin-sensitive photoluminescence studies of semiconducting SWNTs that allow the determination of the quantum yield of triplet formation (5 ± 2%), the triplet lifetime (30 ± 10 µs) and the triplet exciton size (0.65 nm). Triplet–triplet annihilation is also found to induce delayed fluorescence. The power-law decay of pump–probe and time-resolved photoluminescence signals is characteristic of diffusion-limited annihilation in one-dimensional systems and allows an estimation of the triplet diffusion constant of 0.1 cm2 s−1. This work suggests that exciton annihilation in SWNTs is reduced by one-dimensional confinement of diffusive exciton motion. Little is known about triplet excitons in semiconducting single-walled nanotubes, despite their importance in various applications. The pump–probe and spin-sensitive photoluminescence of such nanotubes is studied, and the quantum yield of triplet formation, triplet lifetime and triplet exciton size are found to be 5 ± 2%, 30 ± 10 µs and 0.65 nm, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.