Abstract

Triplet–triplet annihilation (TTA) is an attractive way to boost the efficiency of conventional fluorescent organic light-emitting diodes (OLEDs). TTA-active anthracene derivatives are often considered as state-of-the-art emitters due to the proper energy level alignment. In this work, TTA properties of a series of highly fluorescent nonsymmetrical anthracene compounds bearing 9-(4-arylphenyl) moiety and 10-(4-hexylphenyl) fragments were assessed. Two different methods to enhance the TTA efficiency are demonstrated. First, the intensity of TTA-based delayed fluorescence directly depended on the intersystem crossing (ISC) rate. This ISC rate can be significantly enhanced in more conjugated compounds due to the resonant alignment of S1 and T2 energy levels. While enhanced ISC rate slightly quenches the intensity of prompt fluorescence, the rise of the triplet population boosts the intensity of resultant delayed fluorescence. Second, the triplet annihilation rate can be significantly enhanced by optimization...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call