Abstract

Triplet photovoltaic materials have been rarely investigated in organic solar cells (OSCs) because the role and mechanism of triplet excitons are still unclear. Cyclometalated heavy metal complexes with triplet features are expected to increase exciton diffusion lengths and improve exciton dissociation in OSCs, while the power conversion efficiencies (PCEs) of their bulk-heterojunction (BHJ) OSCs are still limited to <4%. We herein report an octahedral homoleptic tris-Ir(III) complex TBz3Ir as a donor material for BHJ OSCs with a PCE of over 11%. In comparison with the planar organic TBz ligand and heteroleptic TBzIr, TBz3Ir demonstrates the highest PCE and best device stability in both fullerene- and non-fullerene-based devices, owing to the long triplet lifetime, enhanced optical absorption, increased charge transport, and improved film morphology. From transient absorption, triplet excitons were deduced to participate in the photoelectric conversion process. In particular, the more significant 3D structure of TBz3Ir induces an unusual film morphology in TBz3Ir:Y6 blends, showing obviously large domain sizes suitable for triplet excitons. Thus, a high PCE of 11.35% with a high circuit current density of 24.17 mA cm-2 and a fill factor of 0.63 is achieved for small-molecular Ir complex-based BHJ OSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.