Abstract
The efficiency of organic light-emitting diodes crucially depends on triplet harvesters. These accept energy from triplet correlated electron hole pairs and convert it into light. Here, experimental evidence is given that simple aromatic carbonyls, such as thioxanthone, could serve this purpose. In these compounds, the emissive 1 ππ* excitation may rapidly equilibrate with an upper triplet state (3 nπ*). This equilibrium may persist for nanoseconds. Population of the 3 nπ* state via energy transfer from an electron hole pair should result in fluorescence emission and thereby triplet harvesting. To demonstrate the effect, solutions of 1,4-dichlorobenzene (triplet sensitizer) and thioxanthone (harvester) were excited at 266 nm with a nanosecond laser. The emission decay reveals a 100 ns decay absent in the thioxanthone only sample. This matches predictions for an energy transfer limited by diffusion and gives clear evidence that thioxanthone can convert triplet excitations into light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.