Abstract

The "hot exciton" thermally activated delayed fluorescence (TADF) materials have attracted considerable research interest for their utilization of high-lying triplet excitons. In this work, we reported the mechanism of photoluminescence by revealing the spectral evolution from singlet to triplet states in "hot exciton" TADF molecules by transient absorption (TA) spectra and triplet sensitization experiments. The internal conversion and intersystem crossing are much faster than reverse intersystem crossing (RISC), so that high-lying triplet states (Tn) are difficult to accumulate to be observed in the transient absorption spectra. In contrast, the emergence of delayed fluorescence in time-resolved emission spectra demonstrates the existence of a high-lying RISC process (hRISC) from Tn to S1. Triplet sensitization experiments successfully identified the spectral features of the T1 state in the TA spectra. This work sheds light on critical factors for the systematic design of these materials to achieve a high emission quantum yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.