Abstract
It is a general notion that, in organic semiconductors, the transport of electronic excitations, such as neutral excitons of singlet or triplet type and charge carriers, is controlled by both, polaron and disorder effects. For compounds with low energetic disorder triplet exciton diffusion can be described in the framework of Marcus-theory [see Sudha Devi et al.,Phys. Rev. B 78, 045210 (2008)], and a theoretical model for diffusion in more disordered compounds has been developed [see Fishchuk et al., Phys. Rev. B 78, 045211 (2008)]. Here we experimentally demonstrate that such a modified Marcus-type model is suitable to describe triplet exciton transport in commonly used poly($p$-phenylene)-type polymers and oligomers. In particular, we provide a quantitative spectroscopic assessment of the polaronic and the disorder contribution to triplet exciton transport as a function of conjugation length. Franck-Condon analyses of the phosphorescence spectra and temperature-dependent triplet diffusion combined with analytic transport theory demonstrate that, in contrast to charge carriers, Marcus-type jump rates with dominantly polaronic activation energies control the motion of triplet excitons above a transition temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.