Abstract

UV-like DNA damage is created in the dark by chemiexcitation, in which UV-activated enzymes generate reactive oxygen and nitrogen species that create a dioxetane on melanin. Thermal cleavage creates an electronically excited triplet-state carbonyl whose high energy transfers to DNA. Screening natural compounds for the ability to quench this energy identified polyenes, polyphenols, mycosporine-like amino acids, and related compounds better known as antioxidants. To eliminate false positives such as ROS and RNS scavengers, we then used the generator of triplet-state acetone, tetramethyl-1,2-dioxetane (TMD), to excite the triplet-energy reporter 9,10-dibromoanthracene-2-sulfonate (DBAS). Quenching measured as reduction in DBAS luminescence revealed three clusters of 50% inhibitory concentration, ~50 μM, 200–500 μM, and >600 μM, with the former including sorbate, ferulic acid, and resveratrol. Representative triplet-state quenchers prevented chemiexcitation-induced “dark” cyclobutane pyrimidine dimers (dCPD) in DNA and in UVA-irradiated melanocytes. We conclude that (i) the delocalized pi electron cloud that stabilizes the electron-donating activity of many common antioxidants allows the same molecule to prevent an electronically excited species from transferring its triplet-state energy to targets such as DNA and (ii) the most effective class of triplet-state quenchers appear to operate by energy diversion instead of electron donation and dissipate that energy by isomerization.

Highlights

  • IntroductionThe enzymatic activity generating O2 − and NO persists for hours after activation by ultraviolet radiation (UV), continually generating new dioxetanes and forming new cyclobutane pyrimidine dimer (CPD) long after the UV exposure has ended, prompting the term “dark CPD” (dCPD) [8]

  • This energy is so high that one electron of a pair in the carbonyl double bond is excited to a new orbital; the energy flips the spin of that electron, creating what is termed a “triplet state”

  • The triplet-statethe carbonyl wasofformed by heatingconthe ditions and as a reference standard

Read more

Summary

Introduction

The enzymatic activity generating O2 − and NO persists for hours after activation by UV, continually generating new dioxetanes and forming new CPDs long after the UV exposure has ended, prompting the term “dark CPD” (dCPD) [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.