Abstract

Resource Description Framework (RDF) data represents information linkage around the Internet. It uses Inter- nationalized Resources Identifier (IRI) which can be referred to external information. Typically, an RDF data is serialized as a large text file which contains millions of relationships. In this work, we propose a framework based on TripleID-Q, for query processing of large RDF data in a GPU. The key elements of the framework are 1) a compact representation suitable for a Graphics Processing Unit (GPU) and 2) its simple representation conversion method which optimizes the preprocessing overhead. Together with the framework, we propose parallel algorithms which utilize thousands of GPU threads to look for specific data for a given query as well as to perform basic query operations such as union, join, and filter. The TripleID representation is smaller than the original representation 3-4 times. Querying from TripleID using a GPU is up to 108 times faster than using the traditional RDF tool. The speedup can be more than 1,000 times over the traditional RDF store when processing a complex query with union and join of many subqueries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.