Abstract

CuMn2O4 NPs were prepared via coprecipitation method and characterized using microscopic and spectroscopic analyses. CuMn2O4 NPs exhibit a triple-enzymatic activity including peroxidase-, oxidase- and catalase-like activity. The effect of various parameters on the initial rate of the catalytic reaction of CuMn2O4 NPs with peroxidase- and oxidase-like activity was studied by UV-vis spectrometer following the increasing absorption at 415 nm corresponding to the oxidation product of substrate o-phenylenediamine (OPD). Kinetic analyses indicate the Michaelis-Menten model for CuMn2O4 NPs for both peroxidase- and oxidase-like activity. Based on the high peroxidase-like activity of CuMn2O4 NPs, they were further studied as a colorimetric sensor for the detection of H2O2 with a linear range from 0.5 mM to 22 mM and detection limit of 0.11 mM. Inhibition of the high oxidase-like activity of CuMn2O4 NPs was utilized for colorimetric detection of L-cysteine with a linear range from 50 µM to 200 µM and a detection limit of 54.15 µM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.