Abstract

We report on a new approach in the design of CMOS monolithic active pixel sensor (MAPS). We realized a first MAPS prototype chip implementing at the pixel level the standard processing chain commonly used for capacitive detectors. The in-pixel signal processing channel includes a low noise charge preamplifier, a shaper, a discriminator and a latch. This readout approach, realized exploiting the triple well option available in the 0.13 mum process by STMicrolectronics, is compatible with already available architectures performing data sparsification at the pixel level. This feature will be implemented in future development of our device to improve the readout speed potential of these sensors with respect to existing MAPS. Using a charge preamplifier to perform charge to voltage conversion, we also extended the area of the sensing electrode to increase the signal collected by a single pixel. The first prototype chips have been successfully tested with very encouraging results. In this paper we summarize the performance of the front-end electronics and present the response of the sensor to ionizing radiation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.