Abstract
It is well known that given a Steiner triple system (STS) one can define a binary operation ∗ upon its base set by assigning x∗x=x for all x and x∗y=z, where z is the third point in the block containing the pair {x,y}. The same can be done for Mendelsohn triple systems (MTSs) as well as hybrid triple systems (HTSs), where (x,y) is considered to be ordered. In the case of STSs and MTSs, the operation is a quasigroup, however this is not necessarily the case for HTSs. In this paper we study the binary operation induced by HTSs. It turns out that each such operation ∗ satisfies y∈{x∗(x∗y),(x∗y)∗x}andy∈{(y∗x)∗x,x∗(y∗x)} for all x and y from the base set. We call every binary operation that fulfils this condition hybridly symmetric.Not all idempotent hybridly symmetric operations can be obtained from HTSs. We show that these operations correspond to decompositions of a complete digraph into certain digraphs on three vertices. However, an idempotent hybridly symmetric quasigroup always comes from an HTS. The corresponding HTS is then called a latin HTS (LHTS). The core of this paper is the characterization of LHTSs and the description of their existence spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.