Abstract
Vanadium-based materials are widely recognized as the primary candidate cathode materials for aqueous Zn-ion batteries (AZIBs). However, slow kinetics and poor stability pose significant challenges for widespread application. Herein, to address these issues, alkali metal ions and polyaniline (PANI) are introduced into layered hydrated V2O5 (VO). Density functional theory calculations reveal that the synthesized (C6H4NH)0.27K0.24V2O5·0.92H2O (KPVO), with K+ and PANI co-intercalation, exhibits a robust interlayer structure and a continuous three-dimensional (3D) electron transfer network. These properties facilitate the reversible diffusion of Zn2+ with a low migration potential barrier and rapid response kinetics. The KPVO cathode exhibits a discharge specific capacity of 418.3 mAh/g at 100 mA/g and excellent cycling stability with 89.5 % retention after 3000 cycles at 5 A/g. This work provides a general strategy for integrating cathode materials to achieve high specific capacity and excellent kinetic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.