Abstract

Abstract Core-shell mesoporous silica nanoparticles (MSN) have recently emerged as a promising drug delivery system that can be used for loading large quantities of different types of drugs or creating a stimuli responsive system. However, achieving this unique core-shell morphology with smaller size, high specific surface area, and large pore volume is highly challenging. In this study, we report the synthesis of core-shell MSN using a triple surfactant assisted soft-templating approach. We show that the size, morphological and textural properties of the core-shell structures can be easily modified by controlling the amount of fluorocarbon-4 surfactant. The optimised core shell MSN showed the highest surface area of 1496 m2/g that helped in achieving a high drug loading of model drugs doxorubicin (34%) or docetaxel (50%). The small size of core-shell MSN facilitated its rapid uptake within the PC-3 cells within 12 h. The cytotoxicity data using drug loaded MSN showed high cytotoxicity in both PC-3 and LNCaP cell lines suggesting that this versatile platform is efficient in delivering different drugs to various cell types. This unique triple surfactant assisted synthesis of core-shell MSN will open the door for multifaceted applications in imaging and drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.