Abstract

Here we demonstrated an ultrasensitive electrochemical immunoassay employing graphene, platinum nanoparticles (PtNPs), glucose oxidase (GOD) and horseradish peroxidase (HRP) as enhancers to simultaneously detect carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP). This immunosensor is based on the observation that multiple-labeled antibodies (thionine-labeled anti-CEA and ferrocene-labeled anti-AFP) recognition event yielded a distinct voltammetric peak through “sandwich” immunoreaction, whose position and size reflected the identity and level of the corresponding antigen. Greatly enhanced sensitivity for cancer markers is based on a triple signal amplification strategy. Experimental results revealed that the immunoassay enabled simultaneous determination of CEA and AFP in a single run with wide working ranges of 0.01–100ngmL−1. The detection limits reached 1.64pgmL−1 for CEA and 1.33pgmL−1 for AFP. No obvious cross-talk was observed during the experiment. In addition, through the analysis of clinical serum samples, the proposed method received a good correlation with ELISA as a reference. The signal amplification strategy could be easily modified and extended to detect other multiple targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.