Abstract
In this paper, triple reciprocity method (TRM) is employed to transform the unknown function's domain integral appearing in boundary integral equation (BIE) to boundary integrals. The three-dimensional interior Helmholtz equation is represented as a Poisson equation with an unknown function in the right-hand side. The fundamental solution of Laplace equation is used to derive the BIE and there is a domain integral containing unknown field function in the BIE. The triple reciprocity method (TRM) is used to transform this domain integral to boundary integrals. The improved triple reciprocity approximation (TRA) is used to approximate the unknown domain function and solve the high-order derivatives of it virtually. Employing the reciprocity theory, the domain integral is transferred into the boundary integrals containing the unknown field function. Finally, the BIE can be solved without internal cells. The proposed formulas can be employed to treat the domain integral containing time derivatives of unknown variable, both known and unknown functions and other similar types. Three numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulas. Results show that TRM can solve the BIE containing unknown function's domain integral efficiently and accurately.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.