Abstract

Applying a uniform oxide coating to metal nanoparticles used for catalytic hydrocarbon processing simultaneously protects the particles from three common deactivation processes that can lead to frequent chemical reactor shutdowns, according to a study conducted by researchers at Northwestern University and Argonne National Laboratory. The findings, which may help avoid costly chemical plant interruptions, were reported at the American Chemical Society national meeting last week in San Diego and in Science (DOI: 10.1126/science.1212906). A number of chemical and physical processes can rob nanosized metal catalyst particles of their ability to mediate chemical reactions. In hydrocarbon catalysis, the two most common routes to deactivation for such particles are sintering—which causes the particles to agglomerate and fuse together, thereby reducing the surface area available for chemical reactions—and accumulation of coke, a carbonaceous layer that blocks reactants’ access to catalytically active sites. Nano...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.