Abstract

Using an elementary approach, we prove the existence of three positive and concave solutions of the second-order two-point boundary-value problem $$ \begin{array}{lll}&& x^{\prime\prime}(t)=\alpha(t)f(t,x(t),x^{\prime}(t)),\qquad 0 < t < 1,\\&& \qquad \qquad \qquad x(0)=x(1)=0.\end{array}$$ We rely on the analysis of the corresponding vector field on the phase space, Kneser-type properties of the solution funnel, and the Schauder fixed-point theorem. The obtained results demonstrate the simplicity and efficiency (one could study a problem with more general boundary conditions) of our new approach as compared with the commonly used ones, such as the Leggett–Williams fixed-point theorem and its generalizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.