Abstract
We propose a simple quasi-continuous monolayer graphene structure and achieve a dynamically tunable triple plasmon-induced transparency (PIT) effect in the proposed structure. Additional analyses indicate that the proposed structure contains a self-constructed bright-dark-dark mode system. A uniform theoretical model is introduced to investigate the spectral response characteristics and slow light-effects in the proposed system, and the theoretical and the simulated results exhibit high consistency. In addition, the influences of the Fermi level and the carrier mobility of graphene on transmission spectra are discussed. It is found that each PIT window exhibits an independent dynamical adjustability owing to the quasi-continuity of the proposed structure. Finally, the slow-light effects are investigated based on the calculation of the group refractive index and phase shift. It is found that the structure displays excellent slow-light effects near the PIT windows with high-group indices, and the maximum group index of each PIT window exceeds 1000 when the carrier mobility of graphene increases to 3.5 m2 V−1 s−1. The proposed structure has potential to be used in multichannel filters, optical switches, modulators, and slow light devices. Additionally, the established theoretical model lays a theoretical basis for research on multimode coupling effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.