Abstract

para-Substitution reactions on C6F5 rings of Lewis acids have been exploited to achieve triply substituted derivatives. The reaction of B(C6F5)3 with P(SiMe3)3 ultimately affords the Lewis acid B(C6F4P(SiMe3)2)31. This species binds Lewis bases affording the adducts LB(C6F4P(SiMe3)2)3 (L = MeCN 2, OPEt33, PMe34, PBu35) and reacts with LiMe to give the salt [Li][MeB(C6F4P(SiMe3)2)3]·3THF 6. It also reacts with H2O to give (L)B(C6F4PH2)3 (L = H2O 7, MeCN 8). In an analogous fashion, [(C6F5)3PF][B(C6F5)4] was converted to [FP(C6F4P(SiMe3)2)3] [B(C6F5)4] 9 and subsequently to [(MeO)P(C6F4PH2)3][B(C6F5)4] 10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.