Abstract

The goal of next-generation gravity missions (NGGM) is to improve the monitoring of mass transport in the Earth system by an increased space-time sampling capability as well as higher accuracies of a new generation of instrumentation, but also to continue the monitoring time series obtained by past and current missions such as GRACE and GRACE Follow-On. As the likelihood of three satellite pairs being simultaneously in orbit in the mid-term future increased, we have performed a closed-loop simulation to investigate the impact of a third pair in either polar or inclined orbit as an addition to a Bender-type constellation with NGGM instrumentation. For the additional pair, GRACE-like as well as NGGM instrumentation was tested. The analysis showed that the third pair mainly increases the redundancy of the monitoring system but does not significantly improve de-aliasing capabilities. The best-performing triple-pair scenario comprises a third inclined pair with NGGM sensors. Starting with a Bender-type constellation of a polar and an inclined satellite pair, simulation results indicate an average improvement of 11% in case of adding the third pair in a near-polar orbit, and of 21% for the third pair placed in an inclined orbit. The most important advantage of a multi-pair constellation, however, is the possibility to recover daily gravity fields with higher spatial resolution. In the case of the investigated triple-pair scenarios, a meaningful daily resolution with a maximum spherical harmonic degree of 26 can be achieved, while a higher daily parametrization up to degree 40 results in spatial aliasing and thus would need additional constraints or prior information.

Highlights

  • Dedicated gravimetric satellite missions like the Challenging Minisatellite Payload (CHAMP; [1]) and the Gravity Recovery and Climate Experiment (GRACE; [2]) and GRACE Follow-On (FO; [3]) missions have been providing, for nearly two decades, essential observations of the changes of the Earth’s gravity field on a global scale. This monitoring is fundamental for applications in Earth sciences, such as hydrology [4], atmosphere [5], plate tectonics [6], earthquakes [7], and glacial isostatic adjustment (GIA; [8]) as well as cryosphere [9,10]

  • The GRACE-like noise represents a noise level of accelerometer (ACC) and satellite-to-satellite tracking (SST) resembling the error characteristics of the instruments implemented on the GRACE mission, and an next-generation gravity missions (NGGM) noise scenario with improved ACC and laser ranging interferometer (LRI) noise characteristics

  • All scenarios were processed with the Wiese approach, which co-parametrizes low-resolution daily gravity field solutions and longer-term gravity field solution

Read more

Summary

Introduction

Dedicated gravimetric satellite missions like the Challenging Minisatellite Payload (CHAMP; [1]) and the Gravity Recovery and Climate Experiment (GRACE; [2]) and GRACE Follow-On (FO; [3]) missions have been providing, for nearly two decades, essential observations of the changes of the Earth’s gravity field on a global scale This monitoring is fundamental for applications in Earth sciences, such as hydrology [4], atmosphere [5], plate tectonics [6], earthquakes [7], and glacial isostatic adjustment (GIA; [8]) as well as cryosphere [9,10].

Orbit Constellation
Space-Time Sampling
Numerical Simulator
GRACE-Like Noise
NGGM Noise
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call