Abstract

Chemosensors (CSs) with dynamically tunable detection ranges have important significance for their expansion in practical applications; however, most CSs possess an unchangeable detection limit. In this work, we report the first example of a supramolecular polymer vesicle (SPV) chemosensor with a dynamically tunable detection range. SPVs containing porphyrin (PP) moieties and β-cyclodextrin (β-CD)/azobenzene (Azo) host-guest interactions were first constructed. The obtained SPVs were used to detect Zn2+ with a high selectivity and sensitivity over a wide detection limit range of 8.67×10-9 to 1.99×10-11 under UV light irradiation. The corresponding sensing mechanism was attributed to the synergistic effects of the triple noncovalent interactions, including the metal-ligand coordination of PP/Zn2+ and the double host-guest interactions of β-CD/Azo and β-CD/PP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.