Abstract

Simple SummaryTriple Negative Breast Cancer (TNBC) is a highly aggressive type of cancer that lacks biomarkers for its early discovery, leading to overall poor prognosis after its diagnosis. Circular RNAs (circRNAs) are a new class of regulatory RNAs and are promising biomarkers for several human diseases, including TNBC. In this study, we profiled the expression of all circRNAs present in TNBC in order to identify new biomarkers for this disease and it was possible to observe that 16 were deregulated, among them hsa_circ_0072309. In two distinct sets of samples, hsa_circ_0072309 was able to distinguish TNBC from healthy controls, making it a promising risk biomarker for this disease. Additionaly, since circRNAs are known to interact with RNA-Binding Proteins (RBPs), we investigated its probable function in this cancer and found that by interacting with such RBPs, this circRNA is acting in several cancer-related biological pathways. Recognizing these differentially expressed circRNAs and identifying their role can lead to a better understanding of dysregulated pathways in TNBC and ultimately allow the development of personalized therapies in this molecular subtype of breast cancer. Circular RNAs (circRNAs) are a class of long non-coding RNAs that have the ability to sponge RNA-Binding Proteins (RBPs). Triple-negative breast cancer (TNBC) has very aggressive behavior and poor prognosis for the patient. Here, we aimed to characterize the global expression profile of circRNAs in TNBC, in order to identify potential risk biomarkers. For that, we obtained RNA-Seq data from TNBC and control samples and performed validation experiments using FFPE and frozen tissues of TNBC patients and controls, followed by in silico analyses to explore circRNA-RBP interactions. We found 16 differentially expressed circRNAs between TNBC patients and controls. Next, we mapped the RBPs that interact with the top five downregulated circRNAs (hsa_circ_0072309, circ_0004365, circ_0006677, circ_0008599, and circ_0009043) and hsa_circ_0000479, resulting in a total of 16 RBPs, most of them being enriched to pathways related to cancer and gene regulation (e.g., AGO1/2, EIF4A3, ELAVL1, and PTBP1). Among the six circRNAs, hsa_circ_0072309 was the one that presented the most confidence results, being able to distinguish TNBC patients from controls with an AUC of 0.78 and 0.81, respectively. This circRNA may be interacting with some RBPs involved in important cancer-related pathways and is a novel potential risk biomarker of TNBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.