Abstract

The construction of chiroptical materials with controllable chirality is of special importance in biology and chemistry. Although tunable chirality can be realized in various systems, it remains a fundamental challenge to realize multimodulated chiral inversion. Herein, we report that chiral alanine derivative and fluorescent cyanostilbene derivative co-assemble to prepare supramolecular chiral systems, where twist nanofibers with totally inverted supramolecular chirality and circularly polarized luminescence are obtained through stoichiometric modulation. The supramolecular handedness can be inverted by means of altering the cooling rate and incorporating metal ions. The mechanism study reveals that the synergistic effect among hydrogen bonds, coordination interactions, and π-π stacking interactions contributes to the chirality inversion. This work establishes an effective strategy to precisely modulate supramolecular chirality in multiple ways, which shows great potential in developing smart chiroptical materials capable of achieving complex functionalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.