Abstract

We show that any triple Massey product with respect to prime 2 contains 0 whenever it is defined over any field. This extends the theorem of M. J. Hopkins and K. G. Wickelgren, from global fields to any fields. This is the first time when the vanishing of any n -Massey product for some prime p has been established for all fields. This leads to a strong restriction on the shape of relations in the maximal pro-2-quotients of absolute Galois groups, which was out of reach until now. We also develop an extension of Serre's transgression method to detect triple commutators in relations of pro- p -groups, where we do not require that all cup products vanish. We prove that all n -Massey products, n \geq 3 , vanish for general Demushkin groups. We formulate and provide evidence for two conjectures related to the structure of absolute Galois groups of fields. In each case when these conjectures can be verified, they have some interesting concrete Galois theoretic consequences. They are also related to the Bloch–Kato conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.