Abstract

Rheumatoid arthritis (RA), an autoimmune disease impacting the joints, significantly diminishes the quality of life for patients. Conventional treatments predominantly rely on oral or injectable formulations, underscoring the crucial need for an effective topical remedy. The present study reports a novel triple-layered transdermal platform for efficient RA treatment. The patches are based on an electrospun/electrosprayed diclofenac (DIC)-conjugated polyvinyl alcohol (PVA) nanofibers/nanoparticles (NFs/NPs) composite layer sandwiched between an electrospun supporting layer of polycaprolactone (PCL) NFs, and a 3D-printed sodium alginate-based hydrogel (HG) layer incorporating sodium hyaluronate (HA) and rosuvastatin (ROS)-loaded core-shell lipid nanocapsules (LNCs). The ingeniously designed transdermal patches release the chemically conjugated DIC via skin-secreted esterases at the inflamed sites. The LNCs and patches were characterized using DLS, FTIR, DSC, and electron microscopy. ROS-loaded LNCs (<50 nm as per the TEM micrographs) were able to release about 97 % of ROS during 5 days. In-vitro and in-vivo evaluations definitively established the efficacy of the developed platform, showcasing a substantial reduction in IL-6 and TNF-α through sandwich ELISA measurements in cell culture and Rattus norvegicus plasma samples. Besides, the stained photomicrographs of the rats' ankle joints confirmed the alleviation of the RA symptoms via reducing cell infiltration with a preserved joint tissue structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call