Abstract

A phenomenologically new recovery mechanism – triple junction motion is presented. This recovery mechanism is found to be the dominant one at low and medium temperatures in highly strained aluminum, which has a very fine microstructure, composed of lamellae with the thickness of a few hundred nanometers. Triple junction motion leads to removal of thin lamellae and to a consequent increase of the thickness of neighboring lamellae. This recovery mechanism therefore increases the average lamellar boundary spacing and causes a gradual transition from a lamellar structure to a more equiaxed structure preceding recrystallization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.