Abstract
Oxygen has three naturally occurring isotopes, of mass numbers 16, 17 and 18. Their ratio in atmospheric O2 depends primarily on the isotopic composition of photosynthetically produced O2 from terrestrial and aquatic plants1,2,3, and on isotopic fractionation due to respiration4. These processes fractionate isotopes in a mass-dependent way, such that 17O enrichment would be approximately half of the 18O enrichment relative to 16O. But some photochemical reactions in the stratosphere give rise to a mass-independent isotope fractionation, producing approximately equal 17O and 18O enrichments in stratospheric ozone5 and carbon dioxide6,7, and consequently driving an atmospheric O2 isotope anomaly. Here we present an experimentally based estimate of the size of the 17O/16O anomaly in tropospheric O2, and argue that it largely reflects the influences of biospheric cycling and stratospheric photochemical processes. We propose that because the biosphere removes the isotopically anomalous stratosphere-derived O2 by respiration, and replaces it with isotopically ‘normal’ oxygen by photosynthesis, the magnitude of the tropospheric 17O anomaly can be used as a tracer of global biosphere production. We use measurements of the triple-isotope composition of O2 trapped in bubbles in polar ice to estimate global biosphere productivity at various times over the past 82,000 years. In a second application, we use the isotopic signature of oxygen dissolved in aquatic systems to estimate gross primary production on broad time and space scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.