Abstract

The effect of oligonucleotide-directed triple-helix formation on the binding of a protein to an immediately adjacent sequence has been examined. A double-stranded oligonucleotide was designed with a target site for the binding of a pyrimidine oligonucleotide located immediately adjacent to the recognition sequence for the herpes simplex virus type 1 (HSV-1) origin of replication binding protein, which is encoded by the UL9 gene of HSV-1. Since the optimal conditions for the binding of the UL9 protein and the pyrimidine oligonucleotide to the duplex DNA are markedly different, a pyrimidine oligonucleotide was designed to optimize binding affinity and specificity for the target duplex oligonucleotide. Consideration was given to length and sequence composition in an effort to maximize triple-strand formation under conditions amenable to the formation of the UL9-DNA complex. Using gel mobility shift assays, a trimolecular complex composed of duplex DNA bound to both a third oligonucleotide strand and the UL9 protein was detected, indicating that the UL9-DNA complex is compatible with the presence of a triple helix in the immediately adjacent sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call