Abstract
The goal of this work was to examine the effect of triple helix-forming oligonucleotides on a gyrase target region and on the activity of the enzyme. Using melting temperature measurements and gel mobility shift analysis, it was found that modified oligonucleotides can form a triple helix along the 29-nucleotide region of a 32-bp duplex representing part of the gyrase DNA-target sequence of the 162-bp fragment from pBR322. Triplex formation with this target region has been achieved at pH 7.5 by using a synthetic oligonucleotide in which cytosine was replaced by the C-nucleoside of 2-aminopyridine. The results of the enzymic experiments in vitro with the 162-bp fragment demonstrated that the cleavage reaction mediated by gyrase can be efficiently inhibited by the triplex-forming oligonucleotide modified with 2-aminopyridine. A possible inhibitory mechanism is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.