Abstract

A homopurine-homopyrimidine sequence of human immunodeficiency virus (HIV) proviral DNA was chosen as a target for triple-helix-forming oligonucleotides. An oligonucleotide containing three bases (thymine, cytosine, and guanine) was shown to bind to its target sequence under physiological conditions. This oligonucleotide is bound in a parallel orientation with respect to the homopurine sequence. Thymines recognize A.T base pairs to form T.A.T base triplets and guanines recognize a run of G.C base pairs to form G.G.C base triplets. A single 5-methylcytosine was shown to stabilize the triple helix when incorporated in a stretch of thymines; it recognizes a single G.C base pair in a run of A.T base pairs. These results provide some of the rules required for choosing the more appropriate oligonucleotide sequence to form a triple helix at a homopurine-homopyrimidine sequence of duplex DNA. A psoralen derivative attached to the oligonucleotide containing thymine, 5-methylcytosine, and guanine was shown to photoinduce cross-linking of the two DNA strands at the target sequence in a plasmid containing part of the HIV proviral DNA sequence. Triplex formation and cross-linking were monitored by inhibition of Dra I restriction enzyme cleavage. The present results provide a rational basis for the development of triplex-forming oligonucleotides targeted to specific sequences of the HIV provirus integrated in its host genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.