Abstract
Measurement error (M.E) can have a substantial impact on quality control applications, diminishing the sensitivity to detect changes in the mean or variance of quality characteristics. To monitor shifts in process mean and dispersion, Exponentially Weighted Moving Average (EWMA) and Cumulative Sum (CUSUM) control charts are commonly employed. In our research, we investigated the influence of M.E on the Triple Exponentially Weighted Moving Average (TEWMA) control chart. We assessed the performance of the control chart using Average Run Length (ARL) as the evaluation metric. To compute the ARL properties, we adopted the Monte-Carlo simulation method. A comparison section has been made to check the performance efficiency of the control chart with the existing EWMA control chart. The implementation of a control chart on a real data set is also presented.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.