Abstract

AbstractLa Niña persisted from 2020 to 2023, but its mechanisms are still unclear. In this study, atmosphere and ocean reanalysis and 100‐member initialized forecasts using a state‐of‐the‐art climate model were analyzed to identify factors contributing to the persistence of the first‐ to second‐year La Niña during 2020–2022. We found that North Pacific high pressure anomalies in the winter of 2020/2021 forced a negative phase of the Pacific meridional mode through the following spring, forming the broader structure of La Niña. The resultant broader La Niña pattern slowed down the recharge‐discharge process by Ekman transport, persisting La Niña. Ensemble forecast sensitivity analysis revealed that the meridional extent of La Niña explains its forecast spread, reaffirming the importance of La Niña spatial pattern. Advancing predictive understanding of 2020–2022 multi‐year La Niña can help to improve the extended seasonal forecast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.