Abstract

The cathode of a protonic ceramic fuel cell must be able to facilitate ion and electron transfer, while simultaneously possessing a high catalytic activity for steam generation and the dissociation of gas-phase molecules. In this study, the performance of a cathode for protonic ceramic fuel cells is optimized by employing a triple-component composite cathode design, which integrates proton conductors, mixed electronic–ionic conductors, and a catalytic layer. Additionally, two other composite cathodes are fabricated for comparison. Owing to its higher electrical conductivity but lower catalytic activity, the composite cathode with protonic ceramic and (Ba0.95La0.05) (Fe0.8Zn0.2)O3-δ (BLFZ) exhibits lower ohmic resistance but poor catalytic activity compared to the composite cathode with protonic ceramic and Ba(Co0.4Fe0.4Zr0.1Y0.1)O3-δ (BCFZY). The triple-component cathode is fabricated by infiltrating BCFZY into a composite cathode composed of BLFZ and protonic ceramic, and both the ohmic and non-ohmic resistances of the cathode are optimized in CH4 and H2 fuels. In particular, the performance of CH4 fuel is significantly improved by adopting a triple-component cathode. These results suggest a possible contribution of the oxygen reduction reaction at the cathode to the reformation of CH4 at the anode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call