Abstract

Although multimodal cancer therapy has shown superior antitumor efficacy in comparison to individual therapy due to the potential generation of synergistic interactions among the treatments, its clinical usage is highly hampered by systemic dose-limiting toxicities. Herein, we developed a multi-responsive nanocomplex constructed from alginate hydrogel co-loaded with cisplatin and gold nanoparticles (AuNPs) (abbreviated as ACA) to combine chemotherapy, radiotherapy (RT) and photothermal therapy. The nanocomplex markedly improved the efficiency of drug delivery where ACA resulted in noticeably higher tumor growth inhibition than free cisplatin. The tumor treated with ACA showed an increased heating rate upon 532 nm laser irradiation, indicating the photothermal conversion ability of the nanocomplex. While RT alone resulted in slight tumor growth inhibition, thermo-chemo therapy, chemoradiation therapy and thermo-radio therapy using ACA dramatically slowed down the rate of tumor growth. Upon 532 nm laser and 6 MV X-ray, the nanocomplex could enable a trimodal thermo-chemo-radio therapy that yielded complete tumor regression with no evidence of relapse during the 90-days follow up period. The results of this study demonstrated that the incorporation of AuNPs and cisplatin into alginate hydrogel network can effectively combine chemotherapy, RT and photothermal therapy to achieve a locally synergistic cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.