Abstract

We consider the motions of particles in the one-dimensional Newtonian three-body problem as a function of initial values. Using a mapping of orbits to symbol sequences we locate the initial values leading to triple collisions. These turn out to form curves which give clear structure to the region in which the motions depend sensitively on initial conditions. In addition to finding the triple collision orbits we also locate orbits which end up to a triple collision in both directions of time, that is, orbits which are finite both in space and time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.