Abstract

A switch-mode power amplifier topology that can achieve both a high conversion efficiency and low-output signal distortion is introduced. Such systems are desirable for ultra-high precision amplifiers that, for example, drive actuators in nanometre-accuracy mechatronic positioning applications in integrated semiconductor manufacturing. An efficient Class-D power stage, which is limited in output signal quality due to its inherent half-bridge interlock time, is combined through a magnetically coupled inductor with a dual buck conversion stage that does not require interlock time and, due to its circulating bias current that defines the half-bridge switching waveforms, achieves very low-harmonic output signal distortion. The control system can seamlessly adjust the current sharing of the two converter stages such that overall conversion efficiencies over 95% and output total harmonic distortion values below −100 dB are achievable at power levels up to several kilowatts. Detailed computer simulations demonstrate the feasibility of the concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call