Abstract

In this work, a triple-amplified biosensor with a bioactivity-maintained peculiarity was constructed for quantitative procalcitonin (PCT) detection. As everyone knows, a strong electrochemiluminescence (ECL) signal is the premise to ensure high sensitivity for trace target detection. Hence, a valid tactic was developed to achieve signal amplification of luminophor by using Co2+-based metal-organic frameworks (ZIF-67) and silver-cysteine (AgCys). The ZIF-67 particles, which have more atomically dispersed Co2+, could play the role of a co-reaction accelerator to catalyze S2O82- to generate abundant Co3+ and sulfate radical anions (SO4•-). Afterward, a mass of Co3+ was reduced to more hydroxyl radicals (OH•) by H2O, thus ulteriorly reducing S2O82- to generate more SO4•-. Remarkably, S2O82- was reduced to SO4•- continuously with the recycling of Co2+ and Co3+, which realized an effective signal amplification. Meanwhile, the AgCys complex with superior catalysis and biocompatibility was prepared to further improve the ECL signal and maintain the bioactivity of the biomolecule. Furthermore, HWRGWVC, a heptapeptide that was used for combining the Fc fragments of an antibody by Au-S bonding to achieve the fixed point fixation, could not only maintain bioactivity of an antibody but also improved its incubation efficiency, thus further enhancing biosensor sensitivity. Under optimum conditions, the proposed biosensor realized highly sensitive assay for PCT with a wide dynamic range from 10 fg/mL to 100 ng/mL and a detection limit as low as 3.67 fg/mL. With superior stability, selectivity, and repeatability, the prepared biosensor revealed immense potential application of ultrasensitive assay for PCT in human serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call