Abstract

The exploration of novel molecular architectures is crucial for the design of high-performance ambipolar polymer semiconductors. Here, a "triple-acceptors architecture" strategy to design the ambipolar polymer DPP-2T-DPP-TBT is introduced. The utilization of this architecture enables DPP-2T-DPP-TBT to achieve deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels of -5.38/-4.19 eV, and strong intermolecular interactions, which are favorable for hole/electron injection and intermolecular hopping through π-stacking. All these factors result in excellent ambipolar transport characteristics and promising applications in complementary-like circuits for DPP-2T-DPP-TBT under ambient conditions with high hole/electron mobilities and a gain value of up to 3.01/3.84 cm2 V-1 s-1 and 171, respectively, which are among the best performances in ambipolar polymer organic thin-film transistors and associated complementary-like circuits, especially in top-gate device configuration with low-cost glass as substrates. These results demonstrate that the "triple-acceptors architecture" strategy is an effective way for designing high-performance ambipolar polymer semiconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call