Abstract

A new series of triphenylamine-based indoline dye sensitizers were molecularly designed and investigated for their potential use in dye-sensitized solar cells (DSSCs). Theoretical calculations revealed that modifying donor part of D149 by triphenylamine significantly altered the electronic structures, MO energies, and intramolecular charge transfer (ICT) absorption band. Key parameters associated with the light-harvesting efficiency at a given wavelength LHE(λ), the driving force ΔG inject, and the open-circuit photovoltage V oc were characterized. More importantly, these designed (dimeric) dye sensitizers were found to have similar broad absorption spectra to their corresponding monomers, indicating that modifying the donor part with triphenylamine may stop unfavorable dye aggregation. Further analyses of the dye-(TiO2)9 cluster interaction confirmed that there was strong electronic coupling at the interface. These results are expected to provide useful guidance in the molecular design of new highly efficient metal-free organic dyes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.