Abstract

Star-shaped molecules based on a triphenylamine core derivatized with various combinations of thienylenevinylene conjugated branches and electron-withdrawing indanedione or dicyanovinyl groups have been synthesized. UV-vis absorption and fluorescence emission data show that the introduction of the electron-acceptor groups induces an intramolecular charge transfer that results in a shift of the absorption onset toward longer wavelengths and a quenching of photoluminescence. Cyclic voltammetry shows that all compounds present a reversible first oxidation process whose potential increases with the number of electron-withdrawing groups in the structure. Prototype bulk and bilayer heterojunction solar cells have been realized using fullerene C60 derivatives as acceptor material. The results obtained with both kinds of devices show that the introduction of electron-acceptor groups in the donor structure induces an extension of the photoresponse in the visible spectral region, an increase of the maximum external quantum efficiency, and an increase of the open-circuit voltage under white light illumination. These synergistic effects allow reaching power conversion efficiencies of approximately 1.20% under simulated AM 1.5 solar irradiation at 100 mW cm(-2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.