Abstract

Transition metal phosphides have great potential to optimize a number of functionalities in several energy conversion and storage applications, particularly when nanostructured or in nanoparticle form. However, the synthesis of transition metal phosphide nanoparticles and its scalability is often limited by the toxicity, air sensitivity, and high cost of the reagents used. We present here a simple, scalable, and cost-effective “heating up” procedure to produce metal phosphides using inexpensive, low-toxicity, and air-stable triphenyl phosphite as source of phosphorus and chlorides as metal precursors. This procedure allows the synthesis of a variety of phosphide nanoparticles, including phosphides of Ni, Co, and Cu. The use of carbonyl metal precursors further allowed the synthesis of Fe2P and MoP nanoparticles. The fact that minor modifications in the experimental parameters allowed producing nanoparticles with different compositions and even to tune their size and shape shows the high potential and vers...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.