Abstract

Nickel-rich cathode material has received marked attention as an advanced cathode material, however, its inferior surface property limits the achievement of high performance in lithium-ion batteries. We propose the use of a bi-functional additive of triphenyl borate (TPB) for improvement of the safety and electrochemical performance of Ni-rich cathode materials. First, TPB removes residual lithium species from the Ni-rich cathode surface via chemical binding with anion part of residual lithium species, and effectively reduces swelling behavior of the cell. Second, TPB creates effective cathode−electrolyte interphase (CEI) layers on the electrode surface by an electrochemical reaction, and greatly enhances the surface stability of the nickel-rich cathode. This work demonstrate that a cell cycled with the TPB additive exhibits a remarkable retention of 88.6% at 60 °C after 100 cycles for an NCM721 cathode material. We suggest a working mechanism for TPB based on systematic analyses, including in-situ and ex-situ experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call