Abstract
BackgroundTriphala is commonly used in Ayurvedic medicine to treat variety of diseases; however its mechanism of action remains unexplored. This study elucidates the molecular mechanism of Triphala against human pancreatic cancer in the cellular and in vivo model.MethodsGrowth-inhibitory effects of Triphala were evaluated in Capan-2, BxPC-3 and HPDE-6 cells by Sulphoradamine-B assay. Apoptosis was determined by cell death assay and western blotting. Triphala was administered orally to nude mice implanted with Capan-2 xenograft. Tumors were analyzed by immunohistochemistry and western blotting.ResultsExposure of Capan-2 cells to the aqueous extract of Triphala for 24 h resulted in the significant decrease in the survival of cells in a dose-dependent manner with an IC50 of about 50 μg/ml. Triphala-mediated reduced cell survival correlated with induction of apoptosis, which was associated with reactive oxygen species (ROS) generation. Triphala-induced apoptosis was linked with phosphorylation of p53 at Ser-15 and ERK at Thr-202/Tyr-204 in Capan-2 cells. Above mentioned effects were significantly blocked when the cells were pretreated with an antioxidant N-acetylcysteine (NAC), suggesting the involvement of ROS generation. Pretreatment of cells with pifithrin-α or U0126, specific inhibitors of p53 or MEK-1/2, significantly attenuated Triphala-induced apoptosis. Moreover, NAC or U0126 pretreatment significantly attenuated Triphala-induced p53 transcriptional activity. Similarly, Triphala induced apoptosis in another pancreatic cancer cell line BxPC-3 by activating ERK. On the other hand, Triphala failed to induce apoptosis or activate ERK or p53 in normal human pancreatic ductal epithelial (HPDE-6) cells. Further, oral administration of 50 mg/kg or 100 mg/kg Triphala in PBS, 5 days/week significantly suppressed the growth of Capan-2 pancreatic tumor-xenograft. Reduced tumor-growth in Triphala fed mice was due to increased apoptosis in the tumors cells, which was associated with increased activation of p53 and ERK.ConclusionOur preclinical studies demonstrate that Triphala is effective in inhibiting the growth of human pancreatic cancer cells in both cellular and in vivo model. Our data also suggests that the growth inhibitory effects of Triphala is mediated by the activation of ERK and p53 and shows potential for the treatment and/or prevention of human pancreatic cancer.
Highlights
Triphala is commonly used in Ayurvedic medicine to treat variety of diseases; its mechanism of action remains unexplored
Effects of Triphala on the survival of human pancreatic cancer cells and induction of apoptosis We first examined the effects of Triphala on the growth of Capan-2 human pancreatic cancer cells
In order to determine the mechanism of the antiproliferative effects of Triphala, experiments were carried out to measure the levels of cytoplasmic histone associated DNA fragments using cell death detection ELISA kit
Summary
Triphala is commonly used in Ayurvedic medicine to treat variety of diseases; its mechanism of action remains unexplored. This study elucidates the molecular mechanism of Triphala against human pancreatic cancer in the cellular and in vivo model. It is estimated that about 33,000 new cases of pancreatic cancer will be diagnosed in the United States each year [3,4]. Several epidemiological studies suggested that diet rich in fruits, vegetables or certain herbs may be protective against various human malignancies including pancreatic cancer [7,8,9]. The cell death detection ELISA kit was obtained from Roche Diagnostic Gmbh (Mannheim, Germany) and P53 transcription factor assay kit was procured from TransAM (Carlsbad, CA). Enhanced chemiluminescence kit was bought from Perkin Elmer Life Science Products (Boston, MA). NE-PER Nuclear and Cytoplasmic extraction reagent kit was acquired from Pierce biotechnology
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.