Abstract

Previously reported pentapeptidic BACE1 inhibitors, designed using a substrate-based approach, were used as lead compounds for the further design of non-peptidic BACE1 inhibitors. Although these peptidic and non-peptidic inhibitors, with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic, exhibited potent BACE1 inhibitory activities, their molecular-sizes appeared a little too big (molecular weight of >600daltons) for developing practical anti-Alzheimer's disease drugs. To develop lower weight BACE1 inhibitors, a series of tripeptidic BACE1 inhibitors were devised using a design approach based on the conformation of a virtual inhibitor bound to the BACE1 active site, also called 'in-silico conformational structure-based design'. Although these tripeptidic BACE1 inhibitors contained some natural amino acid residues, they are expected to be useful as lead compounds for developing the next generation BACE1 inhibitors, due to their low molecular size and unique structural features compared with previously reported inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call